Loss Function with Simple Python
Python Simulation Without Libraries
# Simple loss calculator: y = mx + b def predict(x, m, b): return m * x + b def mse_loss(y_true, y_pred): error = 0 for yt, yp in zip(y_true, y_pred): error += (yt - yp) ** 2 return error / len(y_true) # Data x_data = [1, 2, 3] y_data = [2, 4, 6] # Ideal: y = 2x # Let's predict with wrong values m, b = 1.5, 0.5 predictions = [predict(x, m, b) for x in x_data] loss = mse_loss(y_data, predictions) print("Loss:", loss)
Summary — Relevancy of Loss Function
- Core metric guiding learning.
- Without it, no feedback — no learning.
- Shapes how we optimize the network.
- Helps detect underfitting/overfitting.
- Used to compare multiple models objectively.