Sparse Initialization example with Simple Python
We’ll use a 3-layer neural network, but initialize it with sparse weights.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import random # Simulating sparse weight initialization def sparse_initialize(rows, cols, sparsity = 0.8 ): weights = [] for i in range (rows): row = [] for j in range (cols): if random.random() < sparsity: row.append( 0.0 ) # Mostly zeros else : row.append(random.uniform( - 0.1 , 0.1 )) # Small random values weights.append(row) return weights # Example: 4 input neurons, 5 hidden neurons input_to_hidden = sparse_initialize( 5 , 4 , sparsity = 0.7 ) # Display print ( "Sparse Initialized Weights (Hidden Layer):" ) for row in input_to_hidden: print (row) |
Output:
Sparse Initialized Weights (Hidden Layer):
[0.0, 0.0, 0.03255273994082253, 0.048024808700993404]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.09314012611398312, 0.0]
[-0.06676975747645872, -0.04194356851680425, 0.0, -0.023752588882273717]
[0.0, 0.0, 0.0, 0.0]
Sparse Initialization applicability in Neural Network – Basic Math Concepts