Summary – Bayesian Regression
1. Define the Model Structure
- Decide your regression equation:
y=b0+b1x1+b2x2+⋯+bnxn+ϵ
- Identify our features (inputs) and target variable (output).
2. Assign Priors to Parameters
- Define prior beliefs about each weight (e.g., slope, intercept).
bi∼N(μi,σi2)
- Choose prior mean and variance based on experience or domain knowledge.
3. Collect Observed Data
- Get training data: (X,y)(X, y)(X,y), where X is the feature matrix and y is the output vector.
- Example: experience, education level, city → salary
4. Calculate the Likelihood
- Define how likely the data is given our current model.
yi∼N(Xi⋅b,σ2)
- This expresses how much you trust the data.
5. Apply Bayes’ Theorem
Posterior=Likelihood×Prior / Evidence
- Update our parameter beliefs based on the data.
- This gives us the posterior distribution of each parameter.
6. Make Predictions
- Use the posterior means (or sample from posterior) to make predictions:
y^=X⋅b^
- Include uncertainty intervals if needed (e.g., 95% confidence).
7. Iterate with More Data
- If more data arrives, update the posteriors again (posterior becomes new prior).
- Keeps the model adaptive and learning.
8.Bayesian Regression Flow Diagram
Here’s a visual flowchart that captures all the steps in a clean and linear way:
┌─────────────────────┐
│ Define the Model │
│ (Linear structure) │
└─────────┬───────────┘
↓
┌────────────────────────────┐
│ Assign Prior Distributions │
│ (For intercept & weights) │
└─────────┬──────────────────┘
↓
┌──────────────────────────────┐
│ Collect Observed Data (X,y)│
└────────────┬─────────────────┘
↓
┌──────────────────────────┐
│ Compute Likelihood │
│ P(Data | Parameters) │
└────────────┬─────────────┘
↓
┌──────────────────────┐
│ Apply Bayes’ Rule │
│ Posterior ∝ L × Prior│
└──────────┬───────────┘
↓
┌────────────────────────────┐
│ Make Predictions with │
│ Posterior Means/Distribution│
└────────────┬───────────────┘
↓
┌──────────────────────────────┐
│ Optional: Update with New Data│
│ (Posterior → New Prior) │
└──────────────────────────────┘
Bayesian Regression – Visual Roadmap