Summary – Bayesian Regression

1. Define the Model Structure

  • Decide your regression equation:

    y=b0+b1x1+b2x2+⋯+bnxn+ϵ

  • Identify our features (inputs) and target variable (output).

2. Assign Priors to Parameters

  • Define prior beliefs about each weight (e.g., slope, intercept).

    bi∼N(μi,σi2)

  • Choose prior mean and variance based on experience or domain knowledge.

3. Collect Observed Data

  • Get training data: (X,y)(X, y)(X,y), where X is the feature matrix and y is the output vector.
  • Example: experience, education level, city → salary

4. Calculate the Likelihood

  • Define how likely the data is given our current model.

    yi∼N(Xi⋅b,σ2)

  • This expresses how much you trust the data.

5. Apply Bayes’ Theorem

Posterior=Likelihood×Prior / Evidence

  • Update our parameter beliefs based on the data.
  • This gives us the posterior distribution of each parameter.

6. Make Predictions

  • Use the posterior means (or sample from posterior) to make predictions:

    y^=X⋅b^

  • Include uncertainty intervals if needed (e.g., 95% confidence).

7. Iterate with More Data

  • If more data arrives, update the posteriors again (posterior becomes new prior).
  • Keeps the model adaptive and learning.

8.Bayesian Regression Flow Diagram

Here’s a visual flowchart that captures all the steps in a clean and linear way:

┌─────────────────────┐
│ Define the Model │
│ (Linear structure) │
└─────────┬───────────┘

┌────────────────────────────┐
│ Assign Prior Distributions │
│ (For intercept & weights) │
└─────────┬──────────────────┘

┌──────────────────────────────┐
│ Collect Observed Data (X,y)│
└────────────┬─────────────────┘

┌──────────────────────────┐
│ Compute Likelihood │
│ P(Data | Parameters) │
└────────────┬─────────────┘

┌──────────────────────┐
│ Apply Bayes’ Rule │
│ Posterior ∝ L × Prior│
└──────────┬───────────┘

┌────────────────────────────┐
│ Make Predictions with │
│ Posterior Means/Distribution│
└────────────┬───────────────┘

┌──────────────────────────────┐
│ Optional: Update with New Data│
│ (Posterior → New Prior) │
└──────────────────────────────┘

Bayesian Regression – Visual Roadmap