Sparse Initialization example with Simple Python
We’ll use a 3-layer neural network, but initialize it with sparse weights.
import random # Simulating sparse weight initialization def sparse_initialize(rows, cols, sparsity=0.8): weights = [] for i in range(rows): row = [] for j in range(cols): if random.random() < sparsity: row.append(0.0) # Mostly zeros else: row.append(random.uniform(-0.1, 0.1)) # Small random values weights.append(row) return weights # Example: 4 input neurons, 5 hidden neurons input_to_hidden = sparse_initialize(5, 4, sparsity=0.7) # Display print("Sparse Initialized Weights (Hidden Layer):") for row in input_to_hidden: print(row)
Output:
Sparse Initialized Weights (Hidden Layer):
[0.0, 0.0, 0.03255273994082253, 0.048024808700993404]
[0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.09314012611398312, 0.0]
[-0.06676975747645872, -0.04194356851680425, 0.0, -0.023752588882273717]
[0.0, 0.0, 0.0, 0.0]
Sparse Initialization applicability in Neural Network – Basic Math Concepts