Python Primer

Python for Kids: A Fun Beginner’s Guide (Age 10–12)

What is Python?

Python is a programming language that lets you talk to a computer and tell it what to do. It’s like giving instructions to your robot friend. Python is easy to read and fun to learn!

How to Start?

Your First Program

print("Hello, world!")

1. Python as a Calculator

print(3 + 2)
print(5 - 1)
print(4 * 2)
print(8 / 2)

2. Variables

name = "Alex"
age = 10
print(name)
print(age)

3. Strings (Words)

greeting = "Hi there!"
print(greeting)
print("My name is " + name)

4. Numbers

apples = 5
oranges = 3
total = apples + oranges
print("Total fruits:", total)

5. If Statements (Making Decisions)

age = 12

if age >= 10:
    print("You're allowed to play!")
else:
    print("Sorry, you're too young.")

6. Loops (Repeat Things)

For Loop

for i in range(5):
    print("This is number", i)

While Loop

count = 0
while count < 3:
    print("Counting...", count)
    count += 1

7. Functions (Little Machines)

def say_hello():
    print("Hello there!")

say_hello()

Function with a Parameter

def greet(name):
    print("Hello", name)

greet("Sam")
greet("Ella")

8. Lists (Groups of Items)

fruits = ["apple", "banana", "cherry"]
print(fruits[0])
print(len(fruits))

for fruit in fruits:
    print("I like", fruit)

9. Random Fun!

import random

number = random.randint(1, 10)
print("Your lucky number is:", number)

10. Build a Simple Game: Guess the Number

import random

secret = random.randint(1, 5)
guess = int(input("Guess a number between 1 and 5: "))

if guess == secret:
    print("πŸŽ‰ You got it right!")
else:
    print("Oops! The number was", secret)

11. Bonus Fun: Turtle Graphics

import turtle

t = turtle.Turtle()

for i in range(4):
    t.forward(100)
    t.right(90)

turtle.done()

12. Doing More Math with Python

# Math with operators
print(10 % 3)   # Modulus (Remainder)
print(2 ** 4)   # Exponent (2^4 = 16)
print(15 // 4)  # Floor Division
import math

print(math.sqrt(64))    # Square root
print(math.factorial(5))# Factorial
print(math.sin(0))      # Trigonometric functions

13. Meet NumPy: Fast Math with Arrays

import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(a + b)
print(np.sqrt(a))

14. Meet pandas: Play with Data Tables

import pandas as pd

data = {
  "Name": ["Ava", "Ben", "Cara"],
  "Marks": [88, 92, 85]
}

df = pd.DataFrame(data)
print(df)
print(df["Marks"].mean())

Great Python Books for Kids

  • Python for Kids by Jason R. Briggs
  • Coding Projects in Python by DK
  • Teach Your Kids to Code by Dr. Bryson Payne
  • Adventures in Python by Craig Richardson
  • Mission Python by Sean McManus

Python for Kids: Math, NumPy & pandas Guide

Basic Python Math

print(10 + 5)     # Addition
print(10 - 2)     # Subtraction
print(4 * 3)      # Multiplication
print(9 / 3)      # Division
print(10 % 3)     # Remainder (modulus)
print(2 ** 3)     # Exponents (2^3 = 8)
print(15 // 4)    # Floor division
 
import math

print(math.sqrt(25))     # Square root
print(math.pow(2, 5))     # 2 to the power of 5
print(math.pi)            # Value of Pi
print(math.sin(0))        # Sine function
print(math.factorial(5))  # Factorial of 5 

NumPy: Vectors and Matrices

NumPy is a library used for fast math on big lists of numbers called arrays.

Arrays and Vectors

import numpy as np

v = np.array([1, 2, 3])
print("Vector:", v)
print("Add 5:", v + 5)
print("Double:", v * 2)
print("Squared:", v ** 2) 

Matrices (2D Arrays)

matrix = np.array([[1, 2], [3, 4]])
print(matrix)
print("Transpose:", matrix.T)
print("Multiplied:", matrix * 2) 

Matrix Multiplication

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
print("Dot Product:", np.dot(A, B)) 

Other NumPy Functions

arr = np.array([4, 7, 2, 9, 5])
print("Max:", np.max(arr))
print("Min:", np.min(arr))
print("Mean:", np.mean(arr))
print("Sum:", np.sum(arr))
print("Sorted:", np.sort(arr)) 

pandas: Work with CSV Data

pandas is like Excel in Python! It helps organize and analyze data tables.

Read a CSV

import pandas as pd
df = pd.read_csv("students.csv")
print(df.head()) 

Explore and Describe

print(df.columns)
print(df.shape)
print(df.describe())
print("Average Score:", df["Score"].mean()) 

Filter and Select

high_scores = df[df["Score"] > 80]
print(high_scores)

print(df[["Name", "Score"]]) 

Add and Edit Columns

df["Passed"] = df["Score"] > 50
df["Score"] = df["Score"] + 5 

Save Updated CSV

df.to_csv("updated_students.csv", index=False) 

Python with NumPy: Vectors and Matrices (For Kids & Beginners)

NumPy is a powerful library for doing math with vectors and matrices. Let’s explore how it works step by step!

Getting Started

import numpy as np

Creating Vectors and Matrices

# 1D Vector
v = np.array([1, 2, 3])
print("Vector v:", v)

# 2D Matrix
m = np.array([[1, 2], [3, 4]])
print("Matrix m:")
print(m)

Vector Operations

v = np.array([10, 20, 30])

print(v + 5)        # Add 5 to each element
print(v - 2)        # Subtract 2
print(v * 2)        # Multiply
print(v / 10)       # Divide
print(v ** 2)       # Power
print(np.sqrt(v))   # Square Root

Matrix Operations

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])

# Element-wise operations
print(A + B)
print(A - B)
print(A * B)
print(A / B)

# Transpose
print("Transpose of A:")
print(A.T)

Matrix Multiplication (Dot Product)

A = np.array([[1, 2], [3, 4]])
B = np.array([[2, 0], [1, 2]])

# Dot Product
dot_result = np.dot(A, B)
print("Dot product of A and B:")
print(dot_result)

Norms and Magnitudes

v = np.array([3, 4])

# Magnitude (Euclidean norm)
print("||v|| =", np.linalg.norm(v))

Identity, Inverse, and Determinant

# Identity matrix
I = np.eye(3)
print("Identity Matrix:")
print(I)

# Determinant
D = np.array([[4, 7], [2, 6]])
print("Determinant:", np.linalg.det(D))

# Inverse
inv_D = np.linalg.inv(D)
print("Inverse of D:")
print(inv_D)

Solving Systems of Equations

# Solve Ax = b
A = np.array([[2, 1], [1, 3]])
b = np.array([8, 13])

x = np.linalg.solve(A, b)
print("Solution x:", x)

Extra Functions and Tips

arr = np.array([10, 20, 30, 40, 50])

print(np.mean(arr))     # Average
print(np.median(arr))   # Median
print(np.std(arr))      # Standard Deviation
print(np.max(arr))      # Max
print(np.min(arr))      # Min
print(np.sort(arr))     # Sort

Go to Core Learning